Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nurziana Ngah, Asmizar Jusoh and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.079$
$w R$ factor $=0.137$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-[3-(4-Methoxybenzoyl)thioureido]-3phenylpropionic acid methanol solvate

In the title compound, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{CH}_{4} \mathrm{O}$, the 4-methoxyphenyl and benzyl groups make dihedral angles of 7.28 (18) and $57.54(18)^{\circ}$, respectively, with the central carbonylthiourea group. The crystal structure is stabilized by intermolecular hydrogen bonds, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$, forming a two-dimensional network parallel to the $b c$ face.

Comment

The title compound, (I), is an amino acid derivative of thiourea and is isostructural with its analogues (2S)-2-(3-benzoylthioureido)-3-(1 H)-imidazol-4-yl)propionic acid (Ngah, Shah, Yusof \& Yamin, 2005) and (2S)-2-(3-benzoyl-thioureido)-3-methylbutyric acid (Ngah, Shah, Kassim \& Yamin, 2005). However, the molecule is associated with one methanol molecule of crystallization (Fig. 1). The molecule maintains the cis-trans configuration with respect to the position of 3-phenylpropionic acid and 4-methoxybenzoyl groups relative to the $\mathrm{C}=\mathrm{S}$ bond across their $\mathrm{C} 8-\mathrm{N} 2$ and $\mathrm{C} 8-\mathrm{N} 1$ bonds, respectively. Bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable with those in the above-mentioned analogues (Yusof \& Yamin, 2003; Ngah, Shah, Yusof \& Yamin, 2005; Ngah, Shah, Kassim \& Yamin, 2005).

The 4-methoxyphenyl $\mathrm{C} 1-\mathrm{C} 6 / \mathrm{O} 1 / \mathrm{C} 18$, central carbonylthiourea $\mathrm{S} 1 / \mathrm{O} 2 / \mathrm{N} 1 / \mathrm{N} 2 / \mathrm{C} 7 / \mathrm{C} 8$ and benzyl C10/C11-C16 groups are each planar. The maximum deviation is 0.101 (5) \AA for atom C18 from the least-squares plane of the 4-methoxyphenyl group. The central carbonylthiourea fragment makes dihedral angles of $7.28(18)^{\circ}$ and $57.54(18)^{\circ}$ with the 4 methoxyphenyl and benzyl groups, respectively. The 4methoxyphenyl and benzyl groups are inclined to each other by 63.4 (2) ${ }^{\circ}$.

There are three intramolecular hydrogen bonds, viz. C5$\mathrm{H} 5 A \cdots \mathrm{O} 2, \mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~S} 1$ and $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$, forming two pseudo-five-membered rings, $\mathrm{C} 5 / \mathrm{H} 5 A / \mathrm{O} 2 / \mathrm{C} 7 / \mathrm{C} 6$ and $\mathrm{C} 9 / \mathrm{H} 9 A /$ S1/C8/N2, and a pseudo-six-membered ring, $\mathrm{N} 2 / \mathrm{H} 2 \mathrm{~A} / \mathrm{O} 2 / \mathrm{C} 7 /$ $\mathrm{N} 1 / \mathrm{C} 8$. The crystal structure is stabilized by intermolecular hydrogen bonds (Table 2), forming a two dimensional network parallel to the $b c$ face (Fig. 2).

Received 21 October 2005 Accepted 31 October 2005 Online 26 November 2005

Figure 1
Molecular structure of (I), with 50% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.

Figure 2
Packing diagram of (I), viewed down the a axis. Dashed lines denote $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Experimental

A solution of DL-phenylalanine in acetone was added dropwise to a two-necked round-bottomed flask containing an equimolar solution of 4-methoxybenzoyl isothiocyanate in acetone. The mixture was refluxed for about 5 h to complete the reaction, then filtered into a beaker containing some ice cubes. The white precipitate obtained was washed with cold acetone-distilled water before drying and kept in a desiccator (yield 81%; m.p. 449.3-453.1 K). Recrystallization from methanol yielded single crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=390.45$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=5.0364$ (13) £
$b=16.716$ (4) A
$c=23.040(6) \AA$
$V=1939.7(8) \AA^{3}$
$Z=4$
$Z=4$
$D_{x}=1.337 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2510
reflections
$\theta=1.5-25.0^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.48 \times 0.19 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.910, T_{\text {max }}=0.976$
10023 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.079$
$w R\left(F^{2}\right)=0.137$
$S=1.33$
3384 reflections
257 parameters
H atoms treated by a mixture of independent and constrained refinement

3384 independent reflections 2977 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-5 \rightarrow 5$
$k=-16 \rightarrow 19$
$l=-27 \rightarrow 27$

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0389 P)^{2}\right. \\
\quad \\
\quad+0.7377 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.16 \text { e } \AA^{-3} \\
\text { Absolute structure: Flack }(1983) \\
\quad 1384 \text { Friedel pairs } \\
\text { Flack parameter: } 0.03(16)
\end{array}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

S1-C8	$1.660(4)$	$\mathrm{O} 4-\mathrm{C} 17$	$1.196(5)$
O1-C3	$1.364(5)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.382(5)$
O1-C18	$1.419(5)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.394(5)$
O2-C7	$1.210(4)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.320(5)$
O3-C17	$1.312(5)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.446(5)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2$	$0.86(3)$	$1.96(4)$	$2.630(5)$	$134(3)$
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	0.93	2.47	$2.784(6)$	100
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{~S} 1$	0.98	2.72	$3.052(4)$	100
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 5^{\mathrm{i}}$	$0.85(3)$	$2.53(3)$	$3.358(5)$	$164(4)$
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{O} 5^{\text {ii }}$	$0.86(3)$	$1.88(3)$	$2.735(5)$	$174(6)$
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 4^{\text {iii }}$	$0.85(2)$	$2.26(4)$	$2.789(5)$	$121(4)$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots 5^{\mathrm{i}}$	0.93	2.49	$3.377(6)$	161
$\mathrm{C} 2-\mathrm{H} 2 C \cdots \mathrm{O}^{\text {iv }}$	0.93	2.53	$3.327(5)$	143
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{O}^{\mathrm{v}}$	0.97	2.53	$3.386(6)$	148
$\mathrm{C} 13-\mathrm{H} 13 A \cdots \mathrm{O}^{\text {vi }}$	0.93	2.60	$3.488(7)$	160

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y+1, z$; (iii) $x-1, y-1, z$; (iv) $-x+1, y-\frac{1}{2},-z+\frac{3}{2} ;\left(\right.$ v) $x+1, y, z ;$ (vi) $x+\frac{1}{2},-y+\frac{3}{2},-z+1$.

H atoms attached to N and O atoms were located in a difference map and refined freely. Other H atoms were positioned geometrically in ideal positions after their location in a difference map, and allowed to ride on the parent (C) atom with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}, \mathrm{CH}_{2}$, and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for CH_{3}.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ngah, N., Shah, N. M., Kassim, M. B. \& Yamin, B. M. (2005). Acta Cryst. E61, o1767-o1768.
Ngah, N., Shah, N. M., Yusof, R. \& Yamin, B. M. (2005). Acta Cryst. E61, o1689-o1691.
Sheldrick, G. M. (1997). SHELXTL. Bruker AXS, Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Yusof, M. S. \& Yamin, B. M. (2003). Acta Cryst. E59, o828-o829.

